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The configurational-conformational characteristics of polypropylene are discussed by considering every 
polymer chain as constituted by the periodic repetition of a sequence of monomeric units in a given 
configuration. Sample calculations are presented for the special case in which meso and racemic dyads are 
distributed according to Bernoullian statistics. Numerical results show that the characteristic ratio of atactic 
polypropylene reaches an asymptotic value of 5.34 when the size of the periodic sequence corresponds to 
six monomeric units. The temperature coefficient is calculated to be -1.34 x 10-3 K-1, in good agreement 
with experimental data reported in literature. The characteristic ratio of the mean-square radius of gyration, 
(R~) /n l  2, obtained from our calculations for the atactic polymer is 0.86. The effect of the fraction of meso 
dyads in Bernoullian polypropylene chains on the conformational and configurational entropy is also 
evaluated. 
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INTRODUCTION 

The stereochemical constitution of polypropylene chains 
has a strong influence on the dimensions of the molecular 
coils in the unperturbed state and their temperature 
coefficients, as well as on several properties of polymer 
solutions. 

The configurational-conformational statistics of poly- 
propylene has been treated in several theoretical studies 
based on the rotational isomeric state scheme. Two main 
methods have been proposed for the calculation of the 
chain averages: the Monte Carlo method 1 and the 'all 
skeletal rotations' method coupled with the pseudostereo- 
chemical equilibrium treatment of copolymer chains 2'3. 

In the Monte Carlo approach the non-stereoregular 
sequence of dyads of an atactic polypropylene chain 
is assumed to obey either Bernoullian or first-order 
Markovian statistics with a probability of meso dyad, 
Pro, and a conditional probability of a racemic  dyad 
following a meso one, Pm/r. The representative chains are 
generated by computer simulation and the result of the 
configurational-conformational statistics is obtained by 
averaging over several computer-generated chains. To 
obtain satisfactory results, long computing time is 
necessary due to the very large number of monomeric 
units in a single chain and to the variety of possible 
configurations. The studies that have been carried out 
so far using this approach were confined to the 
consideration of small sets of relatively short chains, with 
less than 200 units ~'4"-1~. 

The pseudostereochemical equilibrium method intro- 
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duces a unified correlation matrix for various configura- 
tional sequences along the chain and assumes that both 
rotational isomeric states and configurations accessible 
to the monomeric units undergo a fictitious dynamic 
equilibrium. 

Allegra 2 proved that the average of the pseudostereo- 
chemical equilibrium model is identical with the average 
of a conveniently chosen subset of chains with fixed 
configuration, whose configuration sequences approach 
the first-order Markovian distribution. 

The configurational characteristics of polypropylene 
samples can be experimentally studied using infra- 
red spectroscopy and high-resolution nuclear magnetic 
resonance (n.m.r.) that allow one to evaluate the 
occurrence probability of various sequences of dyads 
and that aid the understanding of configurational 
sequences12--14-. A vast literature on the experimental and 
theoretical aspects of the stereoconfiguration of vinyl 
polymers is already available 15-34. In this paper we 
develop a new theoretical approach in which matrix 
algebra is directly combined with the occurrence prob- 
ability of configurational sequences. This enables us to 
evaluate the mean-square end-to-end distance and its 
temperature coefficient and the mean-square radius of 
gyration for atactic polypropylene as a function of the 
fraction of meso dyads. The results of these calculations 
are in good agreement with the experimental data 
reported in the literature 35-39. 

THEORETICAL MODEL 

According to the stereochemical terminology of organic 
chemistry, an atactic vinyl polymer chain can be 



described by a sequence of meso and racemic dyads of 
random length, for instance: 

. . .  mmmrrrrrrmmrmmmmrrrmrrmrr . . . 

A sketch of such a chain is shown in Figure 1 where l 
and l' are the lengths of the skeletal and side bonds, 
respectively, and 0 and 0' are the supplements of bond 
angles between two skeletal bonds and between skeletal 
and side bonds, respectively• 

For a polypropylene chain composed of x monomeric 
units, or n = 2x - 1 bonds, there are 2 x- 1 distinguishable 
configurations• The mean-square end-to-end distance 
<rE> of chains with the ith configuration is given, as will 
be discussed in detail in the next section, by 

<r2>'=IJ*(=fi'L \k=x Utk2')Jl -~(J*®Jp)Hgt[I 

where the dyad matrices of the kth bond dyad are: 

U~2)_~U ~) formesodyads  
- [U~ 2~ for racemic dyads (2) 

c ~(2)  ..¢2)_)Ym for meso dyads 
~k --'[9~2 ) for racemic dyads (3) 

and J*, J, J p  and Jo are defined in equations (16) and 
(17). 

The mean-square end-to-end distance of an ensemble 
of chains with different configurations is 

2 x-  t 

<re>= ~ Q,<r2>i (4) 
i = 1  

where Q~ is the occurrence probability of the ith 
configuration of the chain. 

This expression accounts for the total contribution of 
all x-ads of the chain under consideration. However, 
owing to the large number of possible configurations for 
a long chain polymer, it is difficult to arrive at the result 
directly from equation (4). Frisch et al. 2a have developed 
the concept of configurational sequences, dyads, triads, 
tetrads etc., to characterize the microstructure of vinyl 
polymer chains. According to this approach, it is 
conceivable that a macromolecular chain, x monomeric 
units long and with a given configuration, could be 
considered as one of the x-ads, i.e. the full sequence of 
x-1 dyads. To simplify the calculations, the Monte Carlo 
method selects some of the longest configurational 
sequences as the representative chains. The criterion of 
selection used here is different: sequences of monomeric 
units are chosen that repeat along the chain; then, by 
appropriately averaging over all representative chains, 
the mean-square end-to-end distance is derived. Evidently, 
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Figure 1 Representation of the structure of a polypropylene chain 
(R =-CH3) 
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it is convenient to assume that the representative chains 
have configurations dictated by a succession of periodic 
microstructures. In this view, the repeating motif is a 
type of short sequence. For example, in a chain consisting 
of regular alternations of one meso and two raeemic 
dyads: 

•.. m r r m r r m r r m r r  . . . 

the repeating sequence is the tetrad mrr, defined as a 
period of magnitude 3. 

Under general periodic conditions, equations (1) and 
(4) can be written as: 

< r 2 ) i = I J * ( k 0 1 U ( k 2 ) ) t x -  l ) / P J ] -  l ( J * @ J p ) , [ g l  [, 

x (kOl g~2' ) (x-1)/',l g,,l ( J ® J Q ) (5) 

and 
2 p 

<r2> = ~ Pi<r2>, (6) 
i = 1  

where p is the number of dyads in a repeating motif. P~ 
represents the occurrence probability of the ith sequence 
of the (p+ 1)-ads. In this scheme P~ also denotes the 
occurrence probability of the ith representative chain in 
the subensemble of representative chains. Since chains 
are much longer than sequences, it can safely be assumed 
that ( x -  1)/p is an integer. 

The occurrence probability P~ is related to the 
statistical model of the polymerization reaction. The 
probability functions for pentad sequences with Bernoul- 
lian and first-order Markovian statistics are given in 
T a b l e  1 3 2 - 3 4  where the occurrence probabilities of meso 
and racemic dyads are denoted by Pm = ~ and P, = 1 - a, 
respectively. The conditional probabilities that a given 
dyad is followed by an homologous or heterologous one 
are given by: 

Pm/~=fl; Pm/m= l-- f l ;  P m =  l -or; Pr/m- 
1 1 - ~  

N.m.r. provides information on the occurrence prob- 
ability of short sequences (usually involving up to six 
bonds) and enables one to evaluate ~ or ~ and fl for 

Table 1 P r o b a b i l i t y  f u n c t i o n s  fo r  B e r n o u l l i a n  a n d  f i r s t - o r d e r  
M a r k o v i a n  s t a t i s t i c s  

P r o b a b i l i t y  B e r n o u l l i a n  
f u n c t i o n  s t a t i s t i c s  F i r s t - o r d e r  M a r k o v i a n  s t a t i s t i c s  

Pmmmm o: 4 
P m m m r  o:3(1 - c t )  
P r m m m  o:3(l - o : )  
P m r m m  o:3(1 - c t )  
P m m r m  o:3(1 - o : )  
P m m r r  ct:(1 - o : )  2 
P r r m m  o:2(1 - o : )  2 
P r m m r  o:2(1 - o:) 2 
P m r r m  o:2(1 - o : )  2 
P m r m r  ¢2(1 __o:)2 

P r m r m  a2(1  _ ~ ) 2  
P r r r m  0t(1 --  o:) 3 
Pmrrr  o:(1 --o:)  3 
P r m r r  o:(1 - o : )  3 
P r r m r  o:(1 - o:) 3 
Prrrr  (1 - o:)'* 

pmpam/m = o:(1 __fl)3 
PrnP2/mPml, = o:fl(1 - -  fl)2 
p r p  r/mP2/m = o:fl(1 __fl)2 
P,.P,w,Pr/mP,w,.  = (Ctfl) 2 (1 - -  f l ) / (1  - -  O:) 
PmPm/mPm/,Pm/= = (o:fl)2 (1 - f l) /  (1 - o:) 
PmP m/mP m/rP , /r = o: ft (1 - fl )( 1 --  ot fl / ( 1 --  o: ) ) 
PrP~/rPr/mPm/,. = o:ft( 1 - fl)(1 --  o:ft/( 1 - o:) ) 
PrP~/mPm/mPtn/~ = o:fl2(1 - fl) 
PmPm/~Pr/~P~/,,, = (o:fl) 2 (1 - o:ft/( 1 - o:))/( 1 - o:) 
PmP 2/,pr/m = O:2 f13 / (1 --  O: ) 
P~P~mPm/r = o:2fl3/(1 - o:) 
P r P ~ P r / m  = o:fl(1 - o:fl/(1 - o:)) 2 
PmPm/~P2r/r = o:fl(1 - ~tfl/(1 - o:)) 2 
P~Pr/mPr/rPm/~ = ~tfl 2 (1 - o:fl/(1 --  o:)) 
P~P~I,Pr/=Pm/r = o:fl 2 (1 --  o:ft/(1 - o:) ) 
P~P~/, = (1 - ¢t)(1 --  o:fl/(1 --  o:)) 3 
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Bernoullian or Markovian statistics, respectively. If 
n.m.r, could give access to information on occurrence of 
longer sequences (more than six) our procedure would 
be directly applicable, with no need of any a priori 
statistical model for the growing chain. 

Clearly, when equations (5) and (6) replace equations 
(i) and (4), the larger the repeating period taken, the 
more accurate the results will be. The difference will 
vanish if p equals x - 1 .  

CALCULATION PROCEDURE 

We have adopted the three-state model that successfully 
describes the characteristic ratio ((r2)/nl2)oo of poly- 
propylene and its temperature coefficient for the infinite 
isotactic chain. 

According to the fundamental papers of Flory et al. 4"1 ~, 
the internal rotation characteristic of vinyl polymers can 
be expressed in terms of the three statistical weight 
matrices: 

u '  = o9 (7) 

1 zo9 

for the first of the two bonds connecting two consecutive 
asymmetric carbon atoms, and 

f ~og" 1 zog' / 

\r/og' o9' tCoog"/ 

rt o9' tog" 1 
U~'= r/og' 1 to9 / 

\qogtt O9 ,tO)t2 / 

(8) 

(9) 

for the second bond of the meso and racemic bond dyad, 
respectively. 

The considered rotation angles are 

~bt = A ~  

q~g= 120 ° -A~b 
(i0) 

~b~ = 240 ° 

A~=5  ° 

and a set of accepted values at 130°C of the parameters 
in the statistical weight matrices is 5 

r/=0.9 

o9 = 0.0932 
(11) 

co' = o9" = 0.0565 

z=0.6 

The mean-square end-to-end distance of chains with 
periodicity in the sequence of monomeric units were 
already given by equations (5) and (6) for a specific chain 
configuration. In these equations 

u~)= u'u~ ( 12 )  

U~2)- - U'U/ (13) 

O~)=[(U'®Es)IIg*IIq[(U'~®Es)IIg*II] (14) 

g~2)=E(U'®Es)llgll]E(U~'®Es)lle*l[] (15) 

J*=(1  0 0); d=(1 1 1) r (16) 

Jp=(Z 0 0 0 0); Jo=(O 0 0 0 1) r (17) 

and the bond matrix, g, is 

g = T (18) 

0 

g*=g(T*, l )  (19) 

where E5 is the unit matrix of order 5 x 5 while T and 
T* are the transformation matrices associated to the 
reference frames of two successive Cartesian coordinate 
systems attached to the bond¢  'z i. 

cos 0 sin 0 0 ) 

T = [sin 0 cos ¢ - cos 0 cos¢ sin ¢ (20) 
/ 
\sin 0 sin ~ - cos 0 sin ¢ - cos ¢ /  

, [ cos 0 sin 0 0 / 

T * = / s i n 0 c o s ¢  - c o s 0 c o s ¢  - s i n e  (21) 
\ s in0s in¢  - c o s 0 s i n ¢  cos¢ / 

Ilgll is obtained by placing the g matrices for the various 
rotational states of skeletal bonds in a diagonal array: 

Ilgll = g(g) (22) 
0 g(g~ 

gl and g. are bond matrices of the first and the last bonds 
along the chain, respectively, with ~b 1 =~b,=0, and U 1 

and U, are unit matrices of order 3 x 3. 
Figure 2 shows the dependence of the characteristic 

ratio of the mean-square end-to-end distance on period 
length, p, for atactic polypropylene (Pro = 0.5). It appears 
that the characteristic ratio calculated from equation (6) 
is a wave-like curve in the region of short sequences of 
the periodic microstructure; however, a substantial 
independence of this conformational characteristic from 
the period length is achieved already when p i> 6. In fair 
agreement with the results of the Monte Carlo modeP, 
the characteristic ratio of the mean-square end-to-end 
distance of the atactic polypropylene chain converges to 

V r- 

7 

6 

Figure 2 

I I ! I I I 

2 4 6 8 10 12 
P 

Dependence of the calculated characteristic ratio of the 
mean-square end-to-end distance for atactic polypropylene on the 
number of monomeric dyads in the repeating period 
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5.34. Here and in the following figures, the results are 
shown for chains composed of 800 bonds with the set of 
parameters given in equation (11). 

The dependence of the characteristic ratio on the 
occurrence probability of meso dyads, Pro, is reported in 
Figure 3. For this calculation we have considered chains 
with eight monomeric dyads in the repeating period, 
for which the deviation from the asymptotic limit is 
negligible. Biskup and Cantow s obtained similar results 
using the Monte Carlo computation method. Through a 
different approach, our results also substantiate those of 
Allegra and Briickner3: the atactic polymer coil has the 
most compact chain conformation and the isotactic 
chains are less expanded than those of the syndiotactic 
polymer. The present results appear to agree better with 
some experimental data since the dependence of the 
characteristic ratio on the fraction of meso dyads is less 
pronounced than that given in reference 3. 

The temperature coefficient of the mean-square end- 
to-end distance, calculated from 

2 p 
K =  ~ P/din (r2)i/dT (23) 

i=1 

is reported in Figure 4. The value of K obtained here for 
atactic polypropylene, - 1.34 x 10- 3 K-  ~, is intermediate 

7 

E 6 

I . -  

I I I I 

0.2 0.4 0.6 0.8 
Pm 

Figure 3 Characteristic ratio of the mean-square  end-to-end distance 
for polypropylene with Bernoullian statistics as a function of the 
occurrence probability of  meso dyads 

3 

X 

41 2 
"0 1 

I I I I 
0.2 0.4 0.6 0.8 

Pm 
Figure 4 Temperature coefficient of the characteristic ratio of the 
mean-square  end-to-end distance as a function of occurrence 
probability of meso dyads 
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to those of Biskup and Cantow 5 and of Allegra and 
Briickner 3: - 1.8 x 10- 3 and - 1.0 × 10- 3 K -  t, respec- 
tively. It compares quite satisfactorily with the experi- 
mental results ofDanusso et al. 36-38 and Moraglio et al. 39. 

The mean-square radius of gyration of polypropylene 
has received less theoretical interest than the conforma- 
tional characteristics discussed above. Following our 
approach and taking into account the effect of the CH 3 
side groups, it can be shown, after tedious elaboration, 
that the mean-square radius of gyration of polypropylene 
chains with the ith configuration is given by: 

(RE)i = 1/M2[J*(kOl U(k2))ix-1)/PJl-1 

x (J*®Jp,) IIGlll G~ ~) IIG.II 
/ i  

{ p "X(x- 1)/p 

i / p ~(x- 1)/p 
+mbm'Hnlll~k~=ln[2))i llBnll 

{ p "Xtx- t)/p 

II WolIJ(J®JQ,)(24) 

where M is the molecular weight of the chain and m., 
mb and m' denote the masses of CH, CH2 and CH3, 
respectively. Then, by averaging over all representative 
chains and taking into account the occurrence probability 
of the various sequences, the mean-square radius of 
gyration of an ensemble of chains is obtained: 

2P 
(R2)  = ~, Pi(R2)i (25) 

i=1 

In equation (24), the symbols have the following 
meanings: 

Jp,---(1 0 0 0 0  0 0); J Q , = ( 0 0 0 0 0 0  1) r (26) 

( ~ )  for meso dyads 
(27) 

~-" <'(~2) for racemic dyads 

where ~= U, G, H, V,B, D o r  W 

~)=[(U'®Ev)II~'~II][(U'®ET)I[~[I-I (28) 
~2)= [(U'®E~)II~',II][(U;'®ET)H~'II] (29) 

where ¢ = G, H, V, B, D or W 

(i maJPg* mambJglPg*JQ) 
G'm= g* m b JQ =G(m.,mb,g* ) (30) 

0 

G~ = G~' = G(mb,ma,g* ) (31) 

G'r = G(m..mb, g) (32) 

Hm= g* =H(g*) (33) 

0 
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where 

and tp is given by 

H; = H(g) 

H~ = g* go JQ = H~ 

0 
! v! t /  / /  t !  t ! Vm=Bm=B~=Dm=Dr=Wm=Hm 

F~'= W~'=H', 112) 
I/" = V~"= g* gog~JQ 

0 

(34) 

(35) 

(36) 
(37) 

(38) 

(39) 

B; = B(g) (40) 

D ' =  g* =D(g*) (41) 

0 

O', = O(g)  (42) 

W" = W,"= g* go Jo (43) 

0 

gp = g(Tp, l) (44) 

T~ = T*(O', ~ - ~o) (45) 

g~ = g(T~, l') (46) 

T~ = - T 0- X T* (47) 

g, = g(T v 1') (48) 

cos 0'(1 + cos 0) 
cos ~0 = (49) 

sin 0 sin O' 

Since only the last three columns of gr are required, 
T~ need not be defined. E 7 is the unit matrix of order 7 x 7. 

11411 is defined similarly to equation (22), 41 and 
~,(~ = H, F, B, D, G or W) are terminal matrices of ~, i.e. 

1.1 

% 
r" 

A 1.0 
(~ol 

n r  

V 

0 . 9  

0 . 8  I , I I 

0.2 0.4 0.6 0.8 
Pm 

Figure 5 Characteristic ratio of the mean-square radius of gyration 
for polypropylene chains with different percentages of meso dyads 
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Figure 6 Entropy of polypropylene chains (in cal K -a mol-1 of 
backbone bonds) as a function of the occurrence probability of meso 
dyads 

the matrices associated with the first and the last bonds 
of the chain, respectively. 

Figure 5 shows the relation of the characteristic ratio 
of the mean-square radius of gyration, (R2) /n l  2, with the 
probability of meso dyads, Pro" The more compact coil 
is anticipated for the atactic polymer, the syndiotactic one 
being the most expanded. 

Calculation of the molecular weight dependence of the 
radius of gyration for all possible chain configurations 
from equations (24) and (25) requires long computing 
time. We have limited ourselves to the special case of the 
isotactic polymer (Pm-----1) and have obtained: 

(RgZ) 1/2 = 0.34M1/2 (50) 

This theoretical result is in fair agreement with the data 
obtained by Ballard et al. 4° from small-angle neutron 
scattering experiments. 

From the partition function of the ith representative 
chain: 

Zi  = J * ( k O l  U(k2)) (x- 1)/,j (51) 

the entropy of the system can be calculated by considering 
the contribution of all representative chains as: 

2~ 

S = ~ P,R(ln Z, + (T/Z~) dZi /dT)  (52) 
i = l  

The results of our approach are given in Figure 6, where 
the conformational entropy per mole of backbone bonds 
is plotted as a function of Pro. Rather surprisingly, it 
appears that S is a smoothly increasing function of the 
content of meso dyads in the chain. As a consequence, 
our model suggests that the isotactic chains are slightly 
more flexible than the syndiotactic and atactic ones. 
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